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Abstract 

X-ray reflectivity is a powerful technique to study 
electron density profiles in the direction normal to 
the surface of a fiat sample. As usual in scattering 
experiments, where the phase information is lost, it 
is necessary to build a model that can be used to 
calculate the reflectivity for comparison with the 
measured reflectivity. In the calculations, it is 
necessary to correct the calculated reflectivity from 
geometrical and resolution-function factors, which 
play a major role at low angles of incidence. These 
factors are presented in this paper and the corrected 
calculated intensity is compared with the measured 
reflectivity of  a commercial silicon wafer and of a 
niobium film on a sapphire substrate. 

1. Introduction 

X-ray reflectivity is now widely used to determine the 
structure and the composition of fiat surfaces in the 
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direction normal to the sample face. The object of 
the reflectivity measurement is to determine the depth 
profile of electron density inside the material. The 
technique is highly appropriate to investigations of 
multilayers and polymer, magnetic and ferroelectric 
thin layers and also liquid surfaces (Russel, 1990; 
Ms-Nielsen, 1984; Benatar, 1992). Such systems are 
of considerable scientific and industrial interest 
because their properties may differ considerably from 
those of the bulk materials, as is the case in magnetic 
ultrathin layers, and because periodic variation of the 
composition (as in multilayers) causes further differ- 
ences in properties. In addition, the cost of thin layers 
is low compared with that of the bulk materials. 
Furthermore, thin layers are useful for insertion into 
integrated electronics, as, for example, with ferroelec- 
tric nonvolatile memories. 

The measurement of X-ray reflectivity is in prin- 
ciple easy to carry out, especially for samples with 
large fiat surfaces. However, even in this case, the 
finite size of the surface, combined with the non- 
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negligible absorption of the X-ray beam and the 
uncertainty in the size of the beam spot at the sample 
location, introduce some difficulties, although they 
can be overcome in practice. The aim of this paper 
is to describe a methodology for the measurement of 
X-ray reflectivity based upon the experimental 
determination of geometrical factors that are relevant 
in the measurement and in the data reduction of X-ray 
specular reflectivity. We shall assume that the sample 
is ideally terminated and that diffuse scattering is 
negligible compared with the true specular reflectivity 
(Sinha, 1991). 

II. Experimental set-up 

I1.1. Description of the diffractometer 

The measurement of X-ray reflectivity from a fiat 
surface may be made with a diffractometer whose 
detector arm (at an angle 20 to the direct beam) may 
be moved independently of the sample (at an angle 
a to the direct beam). The sample must be mounted 
on an X - Y  translation table so that the sample may 
be brought into the beam and its position finely 
adjusted. It is also advisable to mount it on a 
goniometer head to bring the normal to the face into 
the scattering plane. A set of adjustable slits is 
necessary to cut the beam to the correct size (front 
slits) and to collimate the scattered beam (back slits). 
With a normal tube, a pyrolitic graphite mono- 
chromator may be used, located behind the back slits, 
to select the Ka lines of the target. With such a set-up 
and with a Cu tube operating at 40 kV and 30 mA, a 
flux of 10 7 photons mm -2 s -1 is available in the direct 
beam. This flux is certainly very small compared with 
the flux available from a synchrotron (101° photons 
mm -2 s -~) or a rotating anode ( 1 0  9 photons mm -2 s -1 
with a graphite monochromator). Nevertheless, as the 
range of reflectivity usually measurable with X-rays 
is from 1 to 10 -8 (at the very best), measurements of 
reflectivity are possible with a normal tube provided 
that the background does not exceed 1 count s -1. The 
limiting value of measurable specular reflectivity is 
indeed the background level under the true specular 
signal, which is due to diffuse scattering by static or 
dynamical processes or to air diffusion. A background 
of 1 counts -~ or less can be achieved with an 
appropriate collimation. 

Let us note that, with such a range of reflectivities, 
it is necessary to attenuate the direct beam at low 
angles of incidence. Indeed, most of the detectors 
have an upper limit of saturation that is of the order 
of 4 x 10 4 count s -1. 

that if the direct beam is perfectly collimated and 
uniform (an assumption that is not generally true, as 
we shall see later), makes an incident angle a with 
the surface of the sample (see Fig 1) and has a thick- 
ness T (which depends on the aperture of the front 
slits) then the footprint of the beam on the sample is 

F = T/sin a. (1) 

A correct choice for the front slits is one for which 

D = T/sin a < L for a ~- c~c, (2) 

where ac is the critical angle for total reflection. Let 
us bear in mind that ac is always very small (of the 
order of 0.3°), hence (2) is not always fulfilled. As an 
example, if we fix ac = 0.2 ° and L = 35 mm, we must 
have T < 0.12 mm. 

This example gives an idea about the size of the 
front slits that must be used to achieve total reflection 
of the X-ray beam below the critical angle. Clearly, 
this condition becomes more severe for smaller 
critical angles and reduction of the size of the front 
slits becomes difficult, though not impossible. In addi- 
tion, the uncertainty in the real size of such small 
apertures or in the real thickness of the beam at the 
sample location creates some difficulties, which can, 
however, be experimentally overcome, as we shall see 
later. 

II.3. The choice of back slits 

The aperture of the back slits has to match that of 
the front slits. This reduces the background and 
achieves a good resolution without too much loss of 
intensity. If the front and back slits are matched 
correctly, then a 20 scan of the direct beam, con- 
sidered as uniformly distributed, has a shape given by 

1(20) = 10110(20) * Ho (20), (3) 

where Io is the direct-beam intensity,/-/0 (20) is a step 
function of angular aperture a [full width at half- 
maximum (FWHM)] and the symbol • denotes the 
convolution operation. The convolution of two step 
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11.2. The choice of front slits 

The aperture of the front slits is determined by the 
size L of the sample. It is straightforward to show 

L 
Fig. 1. Diagram of the footprint of the beam for an incident angle 

a of the direct beam on the surface of the sample. 
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functions of the same aperture is a triangular func- 
tion; thus, for matching front and back slits, the direct 
beam is triangularly shaped, as shown in Fig. 2(a). 
Equation (3) is only valid if the monochromator  
mosaic spread is large compared with the angular 
acceptance of the slits; otherwise, it is necessary to 
convolve the step functions with the mosaic-spread 
distribution function of the monochromator.  In addi- 
tion, the direct beam is often not uniformly distributed 
and is then better described by a Gaussian function 
g(20) than a step function. As a result, a 20 scan of 
the detector through the direct beam usually deviates 
from a triangular function and has tails that decrease 
relatively smoothly to zero (see Fig. 2b). The intensity 
is then given by 

1(20) = 0 ( 2 0 )  */-/,~(20). (4) 

II.4. The sample alignment 

The sample is first aligned in the direct beam by 
setting the detector angle to 20 = 0 and translating 
the sample holder so as to halve the intensity of the 
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Fig. 2. Result of  the convolution of (a) two step functions and 
(b) a step function with a Gaussian function, together with the 
direct beam (open circles). In (b) the solid line corresponds to 
the best fit, leading to T d = 120 and Tr = 105 ~m. 

direct beam. Then the parallelism of the sample face 
with the direct beam is ensured by rotating the sample 
about its axis. During this procedure, the edges of 
the sample cut the remaining half-strength of the 
direct beam and the intensity collected by the detector 
should steadily decrease with the sample rotation. If 
the intensity increases during the rotation of the 
sample, the sample face is too far from the beam and 
it must be moved closer until the intensity always 
decreases from a value of half the total beam intensity. 

Once this procedure has been carefully followed, 
the sample is in principle correctly set and the reflec- 
tivity measurement can begin. It is also worth check- 
ing the alignment at a position close to the critical 
angle. At this point, the reflectivity curve is a ridge, 
which follows Fresnel's law in Q parallel to the nor- 
mal of the face (denoted Qz in the following) and is 
extremely narrow in the perpendicular direction 
(denoted Qx in the following). Any mis-setting of the 
sample is then easily discovered and corrected. 

II.5. Different ways to measure the reflectivity 

The reflectivity measurements can be carried out 
in accordance with various procedures. The choice 
of procedure depends upon the way the surface is 
terminated. If the surface is ideally terminated, i.e. 
does not present any correlated fluctuations of elec- 
tron density, then it is possible to measure the reflec- 
tivity directly using a longitudinal or a 0-20 scan 
along the specular ridge. This is the simplest and the 
quickest way to measure the reflectivity but it is very 
important to check that the scan is always along the 
top of the specular ridge, which is very narrow. The 
absolute reflectivity R (20) is given, for the case where 
all the beam is intercepted, by 

R(20)=I(20) / Io ,  (5) 

where I0 is the direct-beam intensity and 1(20) is the 
intensity at the angular position 20 of the detector 
after background subtraction. 

When the sample is not ideally terminated, i.e. 
presents some diffuse scattering in the transverse 
scans across the ridge, it is then necessary to perform 
transverse scans to obtain the true specular reflec- 
tivity, which is the intensity substracted from the 
diffuse scattering. In this case, it is possible to perform 
two kinds of scans: transverse qx scans or angular a 
scans. 

For the angular scan, the absolute reflectivity is 
given by 

R ( 2 0 ) = ~  I(a, 20) da/[½~ Io(20o) d(20o)], (6) 

where 10(20o) is the intensity of the direct beam, in 
the absence of the sample, at the position 20 of the 
detector and I (a ,  20) is the intensity across the ridge 
at the position a of the sample and 20 of the detector. 
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For the qx scan, the steps are given by dqx = Qz da 
and the absolute reflectivity is given by 

g(20)  = Q-~ ~ I ( qx, 20) dqx/[½ ~ lo(20o) d(20o)]. 

(7) 

III. Determination of the geometrical factors 

III.1. Determination of the real thickness of the beam 

The sample-alignment procedure can be used to 
find the exact thickness of the beam at the sample 
location. This thickness T, which we shall consider 
as the FWHM of the nonuniform beam, is a key 
parameter for the correction of the real intensity 
reflected by the sample when the condition given in 
(2) is not fuffilled. With the assumption that the 
sample is correctly set in the main beam, described 
by a Gauss iang( t )  (t being the beam thickness), the 
intensity collected by the detector set at 20 = 0 at a 
position a of the sample is given by 

I(a)=(Io/2) 1 -  og( t )  d t /  ! g(t) d t ,  (8) 

where g(t) is given by 

g(t) = A exp (-t2/20.2), (9) 

0. being the half-width at half-maximum (HWHM) 
of the main beam, which verifies T=20. ;  td is the 
linear width of the detector and ts is given by 

ts = Llsin a l/2. ( 1 O) 

Equation (8), which is valid if the sample is rotated 
about its axis of symmetry, gives the intensity 
measured at a fixed position of the detector as a 
function of the angle a. Any asymmetry in the shape 
is a sign that the sample is incorrectly set (i.e. is not 
symmetric about the axis of rotation). The above 
function can be fitted to the data with the real thick- 
ness Tr = 20- of the beam at the sample location and 
with the detector width Ta as parameters, as shown 
in Fig. 2. In our case, we find that the real thickness 
of the beam, Tr, is in good agreement with the thick- 
ness T of the slits (which are adjustable Huber slits). 
Thus if the slits are located close to the sample then 
the spread of the direct beam is negligible. 

The knowledge of 0- = Tr/2 allows the geometrical 
corrections of the reflected intensity when the nonuni- 
form footprint of the beam is larger than the sample 
width. The corrected reflected intensity at the position 
20 of the detector is given by 

L(sin a ) / 2  / t !  

Ic(20)=I(20) ~ g( t )dt  g(t) dt, (11) 
0 

where 1(20) is the calculated intensity according, for 
example, to the matrix method and tm is the value at 
which the intensity of the direct beam is considered 
to be zero. 

If the beam is uniform and given by a step function 
of FWHM equal to Tr, then the corrected intensity 
is reduced to the following simple expression, which 
is linear in a, 

/~(20) = I(20) L(sin a)lTr 

= 1(20) Lo~/Tr. (12) 

Fig. 3 shows the results of such calculations: there 
is a marked difference in the behavior of the reflected 
intensity for a Gaussian beam (nonlinear reflectivity) 
and a step-function beam (linear reflectivity). In both 
cases, the reflected intensity becomes zero when a is 
zero, since the footprint of the beam is then infinite. 
Nevertheless, the correction to apply close to a = 0 
is a bit more complicated than that proposed in (11) 
and (12). Indeed, although at ~ = 0 the sample does 
not reflect any intensity, it lets half of the direct beam 
fall into the detector. During a 0-20 scan, the 
measured intensity is then the sum of the decreas- 
ing intensity coming from the direct beam and of 
the increasing intensity reflected by the sample, as 
shown for a typical case in Fig. 4 and observed by 
Brugemann, Bloch, Press & Gerlach (1990). In addi- 
tion, a further complication is that the direct beam 
is no longer at the position 20 = 0 in the presence of 
the sample, although it was perfectly centered in its 
absence. This is because the presence of the sample 
modifies the direct-beam repartition of intensity 
viewed from the detector when the detector is at 20 = 0 
or close to this value. Since the sample masks half of 
the direct beam, the beam center is no longer at 20 = 0 
but is offset at 20 = 0.5w, where w is the HWHM of 
the direct beam in the absence of the sample. This 
effect can be clearly seen if the detector is made to 
scan with the sample fixed at c~ = 0 (see Fig. 4). The 
intensity measured during such a scan and normalized 
to the direct-beam intensity is given by 

l (20)=G(20-O.5w)* llw(20), (13) 

0.8 i i i 

/ 
0 6  

04 

z 

0.2 

0.0 
0.0 0.2 0.4 0.6 

28 (degree) 

Fig. 3. Calculated reflectivity with a linear (open circles) and 
nonlinear (open triangles) correction for geometrical factors. 
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where G(2 0 -0 .5  w) denotes a Gaussian function with 
a center at 0.5w and a HWHM equal to w, and Hw(20) 
is a step function of HWHM = w characterizing the 
detector response. 

This effect, which is clear in the 20 scan of the 
detector (see Fig. 4) is also clearly visible during a 
0-20 scan when the sample length is not too large 
because, in this case, the edge of the sample cannot 
mask the direct beam during its rotation. The reflected 
intensity is then the sum of the direct beam and the 
intensity corrected from the geometrical factor 
according to (11). 

The above correction applies only at low angle or 
low Qz wavevector transfer and one may be tempted 
to avoid it by starting the measurement at some value 
of Qz where the correction does not apply. This is 
certainly a possible choice but then it becomes 
difficult to determine the absorption of the X-ray 
beam into the sample. Indeed, the effect of the absorp- 
tion is clearly visible below the critical angle, where 
the geometrical correction applies. As first noted by 
Parrat (1954), it is absorption that makes the reflec- 
tivity deviate from unity below the critical angle. 
Above this limit of total reflection, absorption still 
plays an important role but competes with the usual 
decrease of the reflectivity according to Fresnel's law 
and with the contribution from the interfacial rough- 
ness, so that it becomes more difficult to determine 
the contribution of each factor. This statement is 
enhanced by the fact that even a 'pure' sample is 
frequently composed of multiple slabs that do not 
have the same critical angle and absorption. Let us 
recall that the experimental quantity obtained in a 
reflectivity measurement is the square of the modulus 
of the reflection coefficient, [r[ 2, which can be calcu- 
lated from the electron density depth profile in the 
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i i i i 

o.oo o.~s 0.30 o.4s 
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Fig. 4. Measured reflectivity curve of a silicon wafer of width 
34 mm showing the presence of the direct beam at a location 
different from 20 = 0. Filled triangles describe the scan of the 
detector when the sample is kept at the fixed position a = 0 and 
full circles the result of a 0-20 scan. The continuous lines joining 
the points are merely visual guides. 

material. However, it is well known that ambiguities 
can arise in the calculation because the solution is 
generally nonunique given the high nonlinearity of 
the expression for Ir[ 2. For this reason, a measurement 
of the specular reflectivity below the critical angle 
presents the clear advantage that determination of 
the absorption is possible provided the geometrical 
corrections are made. 

A final correction has to be applied to the calculated 
reflected intensity and is due to resolution-function 
effects. 

111.2. The resolution-function correction 

In addition to the above geometrical correction, 
one has to correct the calculated reflectivity for reso- 
lution effects because the resolution function is not 
an exact 8 function. 

The wavevector transfer Q (see Fig. 5) is given by 

Q = kd - ko. (14) 

For an elastic process, the outgoing wavevector has 
the same magnitude as the incoming wavevector and 
Q has in the (x, z) system of axes two components, 

Qx = ko(cos a -cos /3) ,  (15a) 

Qz = ko(sin ce +sin/3),  (15b) 

where a and/3 are the angles made by the incoming 
and outgoing waves with respect to the surface of the 
sample and ko = 2zr/h. We do not take into account 
the Qy dependence (which is the out-of-plane com- 
ponent) because in this direction the size of the slits 
is large enough to integrate the scattered intensity. 
The differentials of these equations with respect to 
the variables a, 13 and ko are 

dQ~ = -ko(sin a dt~ - s in /3  d/3) 

+ dko(cos a - cos/3), (16a) 

dQz = ko(cos a da  +cos fl d/3) 

+dko(sin c~ +sin fl), (16b) 

Z 

O 

X 

Fig. 5. Schematical representation of the wavevector transfer Q in 
the X, Z system of coordinates. 
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where dko is related to the wavelength dispersion by 

dko = -k0 dA/A. (17) 

With the assumption that da  and d/3 are randomly 
distributed, the uncertainties in Qx and Qz are given 
by 

/1Q2= kE(sin 2 o~/1a 2 +sin E/3 A/32) 

+/1kE(cos a -cos /3 )2 ,  (18a) 

AQ 2 = kE(cos E a ziol E + cos 2/3/I/3 2) 

+/1koE(sin a +sin/3)2. (18b) 

For specular reflectivity, the incoming and outgoing 
angles o~ and/3 are equal to the Bragg angle 0 so that 
the resolution-function HWHM along x and z are 

/1Qx = ko sin 0(AaE+ A / 3 2 )  l / E ,  (19a) 

AQz = [ k 2 COS 2 0( AtX E -Jr/I/3 2) n u 4/1k 2 sin E 0] 1/2. 
(19b) 

For specular reflectivity measurements, 0 is always 
very small and ziko sin 0 is negligible in (19b), so 

AQz = ko cos 0(/1(~E-1 t- A/32) 1/2. (20) 

With the introduction of the HWHM of the direct- 
through beam given by w, 

w =  2A0 = (A/27r) AQz 20=o 

= E + a/32) '/2, (21) 

it follows that 

/1Qx=Qzw/2, (22a) 

AQz = kow cos 0. (22b) 

Equations (22a, b) are very important because they 
give the theoretical values of the HWHM of the 
resolution function in the x, z system of axes. 
Equation 22(a) shows that the width of the resolution 

Table 1. Typical parameters used in the calculation of 
the reflectivity of the silicon wafer 

The parameter  tr denotes the roughness o f  the interface, r is the 
layer th ickness , /x  is the imaginary part of  the index of  refraction 
and qc the critical value for total external reflection o f  the wavevec- 
tor transfer. 

qc ( /~-i)  /~ tr (/~,) r ( ~ )  

S i  0 . 0 3 2  1.1 x 10  - 7  1 - -  

Top layer 0.0265 9.7 x 10 -8 3 17.2 

function in the Qx direction is proportional to Qz. 
This means that the angular width za~ of the reso- 
lution function is constant whatever the Qz position 
along the ridge and is equal to 

Agt= w/2. (23) 

If this condition is not fulfilled, this is a sign that the 
sample is bent on a macroscopic scale and the 
absolute reflectivity is consequently reduced by a 
factor equal to 2Aqt/w at least when the footprint of 
the beam is larger than the sample size. 

Equation (22b) shows that at small angles of 
incidence the width of the resolution function in the 
longitudinal direction for the Qz scan is almost con- 
stant and is equal to kow. 

As a result, the absolute measured reflectivity 
should be compared with the convolution of the cor- 
rected calculated intensity with the resolution func- 
tion, which will be assumed to be Gaussian with a 
HWHM of kow. The final expression for the reflected 
intensity in this case is given by 

l(Qz)=[Ic(Qz)+6(Qz-kow/2)]gkow(Qz), (24) 

where Ic(Qz) is the corrected calculated intensity 
according to (11), 6(Qz-kow/2)  is a delta function 
that describes the direct-beam contribution and g(Qz) 
is the Gaussian resolution function. 
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Fig. 6. Calculated (solid line) and observed reflectivities (filled 
circles) o f  a silicon wafer. The insert shows on a l inear scale the 
calculated and observed reflectivities for small magni tudes  Q. 
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Fig. 7. Calculated (solid line) and observed reflectivities (filled 

circles) o f  a n iobium film on sapphire.  The insert shows on a 
linear scale the part  of  the reflectivity curve for small Oz. 
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To perform the convolution correctly, it is 
necessary to calculate the reflected intensity in the 
same way as for the Gaussian function. Fig. 6 
describes the results of the calculated reflectivity of 
a silicon wafer of width 35 mm in the case of a Q~ 
scan along the ridge. The insert shows on a linear 
scale how the geometrical correction gives a good 
estimation at small Qz of the measured intensity. The 
computation was performed with the matrix tech- 
nique (Born & Wolf, 1964) with help of Matlab soft- 
ware (Gibaud & Vignaud, 1993). The electron density 
depth profile for this silicon wafer can be separated 
from the calculation, showing the presence of a layer 
of thickness 17.2/~ at the surface of the bulk silicon. 
Typical parameters used in the calculation are repor- 
ted in Table 1. The low electron density of the surface 
layer reveals that it is probably related more to water 
deposition than to an oxide deposition. In conclusion, 
the above corrections strongly depend upon the line 
shape of the direct beam. When slits and a graphite 
analyzer (low-resolution mode) are used, the line 
shape is Gaussian but, in the case of a high-resolution 
triple-crystal diffractometer (Ge monochromator- 
crystal-Ge analyzer), the beam line shape is Lorent- 
zian, so a Lorentzian function must be used to per- 
form the corrections. This is illustrated in Fig. 7, 
which represents the absolute reflectivity of a niobium 
film on top of a sapphire substrate. The insert shows 
the observed and corrected calculated reflectivities. 

In this case, the contamination by the direct beam is 
not a problem because the FWHM of the direct beam 
in this high-resolution mode is only 0.01 ° (cf. 0.1 ° for 
the low-resolution mode). The geometrical correction 
is in this case very severe because the sample was 
only 10 mm wide and the beam 200 lxm thick; this is 
clearly illustrated by the fact that the reflectivity was 
far less than 1 at Q = Q~. 
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Abstract 

Up to 100 point charges have been distributed on the 
surface of a sphere such that the configurations dis- 
play T and O symmetry as well as being a minimum, 
global or local, with respect to the Coulombic 
potential. 

Introduction 

The symmetry adopted by N point charges on the 
surface of a sphere such that the Coulombic potential 
is a minimum has been determined by several inves- 
tigators: Ashby & Brittin (1986); Edmundson (1992); 
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Erber & Hockney (1991); Frickel & Bronk (1987); 
Melnyk, Knop & Smith (1977); Rafac, Schiffer, 
Hangst, Dubin & Wales (1991); Weinrach, Carter, 
Bennett & McDowell (1990); Wille (1986). 

Table 1 lists the values of N when the arrangements 
display tetrahedral or octahedral symmetry. This 
paper describes which other values of N can display 
T and O symmetries and at the same time produce 
a local minimum in terms of the Coulombic potential. 

Tetrahedral configurations 

The tetrahedron differs from the other Platonic 
solids in that it is its own dual and has no centre of 
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